
 

Correlation and regression

20C H A P T E R

Correlation is the simplest way to understand

the association between two metric variables.

When extended to multiple regression, the

relationship between one variable and several

others becomes more clear. 

After reading this chapter, you should be able to:

1 discuss the concepts of product moment correlation, partial

correlation and part correlation, and show how they provide a

foundation for regression analysis;

2 explain the nature and methods of bivariate regression analysis

and describe the general model, estimation of parameters,

standardised regression coefficient, significance testing,

prediction accuracy, residual analysis and model cross-

validation;

3 explain the nature and methods of multiple regression analysis

and the meaning of partial regression coefficients;

4 describe specialised techniques used in multiple regression

analysis, particularly stepwise regression, regression with

dummy variables, and analysis of variance and covariance with

regression;

5 discuss non-metric correlation and measures such as

Spearman’s rho and Kendall’s tau.

Objectives

Stage 1

Problem definition

Stage 2

Research approach

developed

Stage 3

Research design

developed

Stage 4

Fieldwork or data

collection

Stage 6

Report preparation

and presentation

Stage 5

Data preparation

and analysis



 

Overview

Chapter 19 examined the relationship among the t test, analysis of variance and
covariance, and regression. This chapter describes regression analysis, which is widely
used for explaining variation in market share, sales, brand preference and other mar-
keting results. This is done in terms of marketing management variables such as
advertising, price, distribution and product quality. Before discussing regression,
however, we describe the concepts of product moment correlation and partial corre-
lation coefficient, which lay the conceptual foundation for regression analysis.

In introducing regression analysis, we discuss the simple bivariate case first. We
describe estimation, standardisation of the regression coefficients, and testing and
examination of the strength and significance of association between variables, predic-
tion accuracy, and the assumptions underlying the regression model. Next, we discuss
the multiple regression model, emphasising the interpretation of parameters, strength
of association, significance tests and examination of residuals.

We then cover topics of special interest in regression analysis, such as stepwise
regression, multicollinearity, relative importance of predictor variables, and cross-val-
idation. We describe regression with dummy variables and the use of this procedure
to conduct analysis of variance and covariance. We begin with two examples that
illustrate applications of regression analysis.

Multiple regression

In the GlobalCash Project, multiple regression analysis was used to develop a model that

explained ‘bank preference’ in terms of respondents’ evaluations of the banks in their own

countries, through four choice criteria. The dependent variable was the preference for indi-

vidual banks. The independent variables were the evaluations of each bank on balance

reporting, domestic payments and collections, international payments and collections, and

managing currencies. The results indicated that all the factors of the choice criteria, except

managing currencies, were significant in explaining bank preference. The coefficients of all

the variables were positive, indicating that higher evaluations on each of the significant fac-

tors led to higher preference for that bank. The model had a good fit and good ability to

predict bank preference. ■

Regression rings the right bell for Avon1

Avon Products were having significant problems with their sales staff. The company’s busi-

ness, dependent on sales representatives, was facing a shortage of sales representatives

without much hope of getting new ones. Regression models were developed to reveal the

possible variables that were fuelling this situation. The models revealed that the most signifi-

cant variable was the level of the appointment fee that reps paid for materials. With data to

back up its actions, the company lowered the fee. This resulted in an improvement in the

recruitment and retention of sales reps. ■

These examples illustrate some of the uses of regression analysis in determining
which independent variables explain a significant variation in the dependent variable
of interest, the structure and form of the relationship, the strength of the relationship,
and predicted values of the dependent variable. Fundamental to regression analysis is
an understanding of the product moment correlation.
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Product moment correlation

In marketing research, we are often interested in summarising the strength of associa-
tion between two metric variables, as in the following situations:

■ How strongly are sales related to advertising expenditures?
■ Is there an association between market share and size of the sales force?
■ Are consumers’ perceptions of quality related to their perceptions of prices?

In situations like these, the product moment correlation (r), is the most widely used
statistic, summarising the strength of association between two metric (interval or
ratio scaled) variables, say X and Y. It is an index used to determine whether a linear
or straight line relationship exists between X and Y. It indicates the degree to which
the variation in one variable, X, is related to the variation in another variable, Y.
Because it was originally proposed by Karl Pearson, it is also known as the Pearson

correlation coefficient and also referred to as simple correlation, bivariate correlation or
merely the correlation coefficient. From a sample of n observations, X and Y, the prod-
uct moment correlation, r, can be calculated as

Division of the numerator and denominator by n – 1 gives

COVxy
= ––––––

SxSy

In these equations, X and Y denote the sample means, and Sx and Sy the standard
deviations. COVxy, the covariance between X and Y, measures the extent to which X
and Y are related. The covariance may be either positive or negative. Division by SxSy

achieves standardisation so that r varies between –1.0 and +1.0. Note that the correla-
tion coefficient is an absolute number and is not expressed in any unit of
measurement. The correlation coefficient between two variables will be the same
regardless of their underlying units of measurement.

As an example, suppose that a researcher wants to explain attitudes towards a
respondent’s city of residence in terms of duration of residence in the city. The atti-
tude is measured on an 11-point scale (1 = do not like the city, 11 = very much like
the city), and the duration of residence is measured in terms of the number of years
the respondent has lived in the city. In a pre-test of 12 respondents, the data shown in
Table 20.1 are obtained.

∑
n
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Product moment
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between two variables in
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The correlation coefficient may be calculated as follows:

X
–

= (10 + 12 + 12 + 4 + 12 + 6 + 8 + 2 + 18 + 9 + 17 + 2)/12
= 9.333

Y
–

= (6 + 9 + 8 + 3 + 10 + 4 + 5 + 2 + 11 + 9 + 10 + 2)/12
= 6.583

∑
n

i=l  

(Xi – X
–

)(Yi – Y
–

) = (10 – 9.33)(6 – 6.58) + (12 – 9.33)(9 – 6.58) 

+ (12 – 9.33)(8 – 6.58) + (4 – 9.33)(3 – 6.58) 
+ (12 – 9.33)(10 – 6.58) + (6 – 9.33)(4 – 6.58)
+ (8 – 9.33)(5 – 6.58) + (2 – 9.33)(2 – 6.58) 
+ (18 – 9.33)(11 – 6.58) + (9 – 9.33)(9 – 6.58) 
+ (17 – 9.33)(10 – 6.58) + (2 – 9.33)(2 – 6.58)

= – 0.3886 + 6.4614 + 3.7914 + 19.0814 + 9.1314 + 8.5914
+ 2.1014 + 33.5714 + 38.3214 – 0.7986 + 26.2314 + 33.5714

= 179.6668

∑
n

i=l  

(Xi – X
–

)2 = (10 – 9.33)2 + (12 – 9.33)2 + (12 – 9.33)2 + (4 – 9.33)2

+ (12 – 9.33)2 + (6 – 9.33)2 + (8 – 9.33)2 + (2 – 9.33)2 + (18 – 9.33)2

+ (9 – 9.33)2 + (17 – 9.33)2 + (2 – 9.33)2

= 0.4489 + 7.1289 + 7.1289 + 28.4089 + 7.1289 + 11.0889 + 1.7689
+ 53.7289 + 75.1689 + 0.1089 + 58.8289 + 53.7289

= 304.6668

∑
n

i=l  

(Yi – Y
–

)2 = (6 – 6.58)2 + (9 – 6.58)2 + (8 – 6.58)2 + (3 – 6.58)2 + (3 – 6.58)2 

+ (10 – 6.58)2 + (4 – 6.58)2 + (5 – 6.58)2 + (2 – 6.58)2 + (11 – 6.58)2

+ (9 – 6.58)2 + (10 – 6.58)2 + (2 – 6.58)2

= 0.3364 + 5.8564 + 2.0164 + 12.8164 + 11.6964 + 6.6564 + 2.4964
+ 20.9764 + 19.5364 + 5.8564 + 11.6964 + 20.9764

= 120.9168
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Respondent Attitude toward Duration of

number the city residence

1 6 10

2 9 12

3 8 12

4 3 4

5 10 12

6 4 6

7 5 8

8 2 2

9 11 18

10 9 9

11 10 17

12 2 2

Table 20.1 Explaining attitude towards the city of residence
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Thus,

= 0.9361

In this example, r = 0.9361, a value close to 1.0. This means that respondents’ dura-

tion of residence in the city is strongly associated with their attitude towards the city.

Furthermore, the positive sign of r implies a positive relationship; the longer the

duration of residence, the more favourable the attitude and vice versa.

Since r indicates the degree to which variation in one variable is related to variation

in another, it can also be expressed in terms of the decomposition of the total varia-

tion (see Chapter 19). In other words,

explained variation
r2 = ––––––––––––––––––

total variation

SSx= ––––
SSy

total variation – error variation
= ––––––––––––––––––––––––––––

total variation

SSy – SSerror
= ––––––––––

SSy

Hence, r 2 measures the proportion of variation in one variable that is explained by

the other. Both r and r 2 are symmetric measures of association. In other words, the

correlation of X with Y is the same as the correlation of Y with X. It does not matter

which variable is considered to be the dependent variable and which the independent.

The product moment coefficient measures the strength of the linear relationship and

is not designed to measure non-linear relationships. Thus r = 0 merely indicates that

there is no linear relationship between X and Y. It does not mean that X and Y are

unrelated. There could well be a non-linear relationship between them, which would

not be captured by r (see Figure 20.1).
When computed for a population rather than a sample, the product moment cor-

relation is denoted by the Greek letter rho, ρ. The coefficient r is an estimator of ρ.
Note that the calculation of r assumes that X and Y are metric variables whose distri-
butions have the same shape. If these assumptions are not met, r is deflated and

179.6668
r =  –––––––––––––––––––––

(304.6668)(120.9168)

0

1

2

3

4

5

6

–2 –1 0 1 2 3

Y

X
–3

Figure 20.1

A non-linear

relationship for which

r = 0



 

underestimates ρ. In marketing research, data obtained by using rating scales with a
small number of categories may not be strictly interval. This tends to deflate r, result-
ing in an underestimation of ρ.2

The statistical significance of the relationship between two variables measured by
using r can be conveniently tested. The hypotheses are

H0: ρ = 0

H1: ρ ≠ 0

The test statistic is

which has a t distribution with n – 2 degrees of freedom.3 For the correlation coeffi-
cient calculated based on the data given in Table 20.1,

and the degrees of freedom = 12 – 2 = 10. From the t distribution table (Table 4 in the
Statistical Appendix), the critical value of t for a two-tailed test and α = 0.05 is 2.228.
Hence, the null hypothesis of no relationship between X and Y is rejected. This, along
with the positive sign of r, indicates that attitude towards the city is positively related
to the duration of residence in the city. Moreover, the high value of r indicates that
this relationship is strong.

In conducting multivariate data analysis, it is often useful to examine the simple
correlation between each pair of variables. These results are presented in the form of a
correlation matrix, which indicates the coefficient of correlation between each pair of
variables. Usually, only the lower triangular portion of the matrix is considered. The
diagonal elements all equal 1.00, since a variable correlates perfectly with itself. The
upper triangular portion of the matrix is a mirror image of the lower triangular por-
tion, since r is a symmetric measure of association. The form of a correlation matrix
for five variables, V1 to V5 is as follows:

Although a matrix of simple correlations provides insights into pairwise associations,
sometimes researchers want to examine the association between two variables after
controlling for one or more other variables. In the latter case, partial correlation
should be estimated.

12 – 2 
t = 0.9361 [––––––––––  ]

G

1 – (0.93612)

= 8.414

n – 1 
t = r [–––––]

G

1 – r 2
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Partial correlation

Whereas the product moment or simple correlation is a measure of association describing
the linear association between two variables, a partial correlation coefficient measures
the association between two variables after controlling for or adjusting for the effects of
one or more additional variables. This statistic is used to answer the following questions:

■ How strongly are sales related to advertising expenditures when the effect of price
is controlled?

■ Is there an association between market share and size of the sales force after adjust-
ing for the effect of sales promotion?

■ Are consumers’ perceptions of quality related to their perceptions of prices when
the effect of brand image is controlled?

As in these situations, suppose that a researcher wanted to calculate the association
between X and Y after controlling for a third variable, Z. Conceptually, one would first
remove the effect of Z from X. To do this, one would predict the values of X based on
a knowledge of Z by using the product moment correlation between X and Z, rxz. The
predicted value of X is then subtracted from the actual value of X to construct an
adjusted value of X. In a similar manner, the values of Y are adjusted to remove the
effects of Z. The product moment correlation between the adjusted values of X and
the adjusted values of Y is the partial correlation coefficient between X and Y, after
controlling for the effect of Z, and is denoted by rxy·z. Statistically, since the simple
correlation between two variables completely describes the linear relationship
between them, the partial correlation coefficient can be calculated by a knowledge of
the simple correlations alone, without using individual observations.

rxy – (rxz)(ryz)
rxy·z = –––––––––––––––

1 – r2
xz 1 – r2

yz

To continue our example, suppose that the researcher wanted to calculate the associa-
tion between attitude towards the city, Y, and duration of residence, X1, after
controlling for a third variable, importance attached to weather, X2. These data are
presented in Table 20.2.
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Partial correlation

coefficient

A measure of the association

between two variables after

controlling or adjusting for the

effects of one or more

additional variables.

Respondent Attitude towards Duration of Importance attached 

number the city residence to weather

1 6 10 3

2 9 12 11

3 8 12 4

4 3 4 1

5 10 12 11

6 4 6 1

7 5 8 7

8 2 2 4

9 11 18 8

10 9 9 10

11 10 17 8

12 2 2 5

Table 20.2 Explaining attitude towards the city of residence, including ‘importance

attached to weather’



 

The simple correlations between the variables are

ryx1
= 0.9361 ryx2

= 0.7334 rx
1

x
2

= 0.5495

The required partial correlation may be calculated as follows:

0.9361 – (0.5495)(0.7334)
rxy1·x2

= –––––––––––––––––––––––––––
1 – (0.5495)2 1 – (0.7334)2

= 0.9386

As can be seen, controlling for the effect of importance attached to weather has little

effect on the association between attitude towards the city and duration of residence.

Partial correlations have an order associated with them that indicates how many

variables are being adjusted or controlled for. The simple correlation coefficient, r, has

a zero order, because it does not control for any additional variables while measuring

the association between two variables. The coefficient rxy·z is a first-order partial cor-

relation coefficient, because it controls for the effect of one additional variable, Z. A

second-order partial correlation coefficient controls for the effects of two variables, a

third-order for the effects of three variables, and so on. The higher-order partial cor-

relations are calculated similarly. The (n + 1)th order partial coefficient may be

calculated by replacing the simple correlation coefficients on the right side of the pre-

ceding equation with the nth order partial coefficients.

Partial correlations can be helpful for detecting spurious relationships (see Chapter

18). The relationship between X and Y is spurious if it is solely because X is associated

with Z, which is indeed the true predictor of Y. In this case, the correlation between X

and Y disappears when the effect of Z is controlled. Consider a case in which con-

sumption of a breakfast cereal brand (C) is positively associated with income (I), with

r
ci = 0.28. Because this brand was popularly priced, income was not expected to be a

significant factor. Therefore, the researcher suspected that this relationship was spuri-

ous. The sample results also indicated that income is positively associated with

household size (H), rhi = 0.48, and that household size is associated with breakfast

cereal consumption, rch = 0.56. These figures seem to indicate that the real predictor

of breakfast cereal consumption is not income but household size. To test this asser-

tion, the first-order partial correlation between cereal consumption and income is

calculated, controlling for the effect of household size. The reader can verify that this

partial correlation, rci·h, is 0.02, and the initial correlation between cereal consumption

and income vanishes when the household size is controlled. Therefore, the correlation

between income and cereal consumption is spurious. The special case when a partial

correlation is larger than its respective zero-order correlation involves a suppressor

effect (see Chapter 18).4

Another correlation coefficient of interest is the part correlation coefficient. This

coefficient represents the correlation between Y and X when the linear effects of the

other independent variables have been removed from X but not from Y. The part cor-

relation coefficient, ry(x·z), is calculated as follows:

rxy – ryzrxz
ry(x·z) = ––––––––––

1

The part correlation between attitude towards the city and the duration of resi-
dence, when the linear effects of the importance attached to weather have been
removed from the duration of residence, can be calculated as

Partial correlation
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from Y).



 

0.9361 – (0.5495)(0.7334)
ry(x

1
·x

2)
= –––––––––––––––––––––––

1 – (0.5495)2

= 0.63806

The partial correlation coefficient is generally viewed as more important than the
part correlation coefficient. The product moment correlation, partial correlation and
part correlation coefficient all assume that the data are interval or ratio scaled. If the
data do not meet these requirements, the researcher should consider the use of non-
metric correlation.

Selling ads to home shoppers5

Advertisements play a very important role in forming attitudes and preferences for brands. In

general, it has been found that for low-involvement products, attitude towards the advertise-

ment mediates brand cognition (beliefs about the brand) and attitude towards the brand. What

would happen to the effect of this mediating variable when products are purchased through a

home shopping network? Home Shopping Budapest in Hungary conducted research to assess

the impact of advertisements towards purchase. A survey was conducted in which several

measures were taken, such as attitude towards the product, attitude towards the brand, atti-

tude towards the ad characteristics and brand cognitions. It was hypothesised that in a home

shopping network, advertisements largely determined attitude towards the brand. To find the

degree of association of attitude towards the ad with both attitude towards the brand and

brand cognition, a partial correlation coefficient could be computed. The partial correlation

would be calculated between attitude towards the brand and brand cognitions after controlling

for the effects of attitude towards the ad on the two variables. If attitude towards the ad is sig-

nificantly high, then the partial correlation coefficient should be significantly less than the

product moment correlation between brand cognition and attitude towards the brand.

Research was conducted which supported this hypothesis. Then Saatchi & Saatchi designed

the ads aired on Home Shopping Budapest to generate positive attitude towards the advertis-

ing. This turned out to be a major competitive weapon for the network. ■

Non-metric correlation

At times the researcher may have to compute the correlation coefficient between two
variables that are non-metric. It may be recalled that non-metric variables do not
have interval or ratio scale properties and do not assume a normal distribution. If the
non-metric variables are ordinal and numeric, Spearman’s rho, ρs, and Kendall’s tau,
τ, are two measures of non-metric correlation which can be used to examine the
correlation between them. Both these measures use rankings rather than the absolute
values of the variables, and the basic concepts underlying them are quite similar. Both
vary from –1.0 to +1.0.

In the absence of ties, Spearman’s ρs yields a closer approximation to the Pearson
product moment correlation coefficient, r, than does Kendall’s τ. In these cases, the
absolute magnitude of τ tends to be smaller than Pearson’s r. On the other hand,
when the data contain a large number of tied ranks, Kendall’s τ seems more appropri-
ate. As a rule of thumb, Kendall’s τ is to be preferred when a large number of cases fall
into a relatively small number of categories (thereby leading to a large number of
ties). Conversely, the use of Spearman’s ρs is preferable when we have a relatively
larger number of categories (thereby having fewer ties).6

The product moment as well as the partial and part correlation coefficients provide
a conceptual foundation for bivariate as well as multiple regression analysis.
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Regression analysis

Regression analysis is a powerful and flexible procedure for analysing associative
relationships between a metric-dependent variable and one or more independent
variables. It can be used in the following ways:

1 To determine whether the independent variables explain a significant variation in
the dependent variable: whether a relationship exists.

2 To determine how much of the variation in the dependent variable can be
explained by the independent variables: strength of the relationship.

3 To determine the structure or form of the relationship: the mathematical equation
relating the independent and dependent variables.

4 To predict the values of the dependent variable.
5 To control for other independent variables when evaluating the contributions of a

specific variable or set of variables.

Although the independent variables may explain the variation in the dependent vari-
able, this does not necessarily imply causation. The use of the terms dependent or
criterion variables and independent or predictor variables in regression analysis arises
from the mathematical relationship between the variables. These terms do not imply
that the criterion variable is dependent on the independent variables in a causal sense.
Regression analysis is concerned with the nature and degree of association between
variables and does not imply or assume any causality. Bivariate regression is discussed
first, followed by multiple regression.

Bivariate regression

Bivariate regression is a procedure for deriving a mathematical relationship, in the
form of an equation, between a single metric-dependent or criterion variable and a
single metric-independent or predictor variable. The analysis is similar in many ways
to determining the simple correlation between two variables. Since an equation has to
be derived, however, one variable must be identified as the dependent variable and the
other as the independent variable. The examples given earlier in the context of simple
correlation can be translated into the regression context.

■ Can variation in sales be explained in terms of variation in advertising expendi-
tures? What is the structure and form of this relationship, and can it be modelled
mathematically by an equation describing a straight line?

■ Can the variation in market share be accounted for by the size of the sales force?
■ Are consumers’ perceptions of quality determined by their perceptions of price?

Before discussing the procedure for conducting bivariate regression, we define some
important statistics associated with bivariate regression analysis.

Bivariate regression model. The basic regression equation is Yi = β0 + β1Xi + ei,
where Y = dependent or criterion variable, X = independent or predictor variable,
β0 = intercept of the line, β1 = slope of the line, and ei is the error term associated
with the ith observation.

Coefficient of determination. The strength of association is measured by the coeffi-
cient of determination, r2. It varies between 0 and 1 and signifies the proportion of
the total variation in Y that is accounted for by the variation in X.

Estimated or predicted value. The estimated or predicted value of Yi is Y
^

i = a +bx,
where Y

^

i is the predicted value of Yi, and a and b are estimators of β0 and β1,
respectively.

Bivariate regression
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Regression coefficient. The estimated parameter b is usually referred to as the non-
standardised regression coefficient.

Scattergram. A scatter diagram, or scattergram, is a plot of the values of two variables
for all the cases or observations.

Standard error of estimate. This statistic, the SEE, is the standard deviation of the
actual Y values from the predicted Y

^
values.

Standard error. The standard deviation of b, SEb, is called the standard error.

Standardised regression coefficient. Also termed the beta coefficient or beta weight,
this is the slope obtained by the regression of Y on X when the data are standardised.

Sum of squared errors. The distances of all the points from the regression line are
squared and added together to arrive at the sum of squared errors, which is a meas-
ure of total error, Σe2

j.

t statistic. A t statistic with n – 2 degrees of freedom can be used to test the null
hypothesis that no linear relationship exists between X and Y, or H0 : β1 = 0, where

b
t = –––––

SEb

Conducting bivariate regression analysis

The steps involved in conducting bivariate regression analysis are described in
Figure 20.2.

Plot the scatter diagram

Suppose that the researcher wants to explain attitudes towards the city of residence in
terms of the duration of residence (see Table 20.2). In deriving such relationships, it is
often useful to first examine a scatter diagram. A scatter diagram, or scattergram, is a
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Plot the scatter diagram

Formulate the general model

Estimate the parameters

Estimate standardised regression coefficient

Test for significance

Determine strength & significance of association

Check prediction accuracy

Examine the residuals

Cross-validate the model

Figure 20.2

Conducting bivariate

regression analysis



 

plot of the values of two variables for all the cases or observations. It is customary to
plot the dependent variable on the vertical axis and the independent variable on the
horizontal axis. A scatter diagram is useful for determining the form of the relation-
ship between the variables. A plot can alert the researcher to patterns in the data or to
possible problems. Any unusual combinations of the two variables can be easily iden-
tified. A plot of Y (attitude towards the city) against X (duration of residence) is given
in Figure 20.3. The points seem to be arranged in a band running from the bottom
left to the top right. One can see the pattern: as one variable increases, so does the
other. It appears from this scattergram that the relationship between X and Y is linear
and could be well described by a straight line. How should the straight line be fitted to
best describe the data?

The most commonly used technique for fitting a straight line to a scattergram is
the least squares procedure. This technique determines the best-fitting line by min-
imising the vertical distances of all the points from the line. The best-fitting line is
called the regression line. Any point that does not fall on the regression line is not
fully accounted for. The vertical distance from the point to the line is the error, ej (see
Figure 20.4). The distances of all the points from the line are squared and added
together to arrive at the sum of squared errors, which is a measure of total error, Σe2

j.
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Figure 20.4

Bivariate regression



 

In fitting the line, the least squares procedure minimises the sum of squared errors. If
Y is plotted on the vertical axis and X on the horizontal axis, as in Figure 20.4, the best
fitting line is called the regression of Y on X, since the vertical distances are min-
imised. The scatter diagram indicates whether the relationship between Y and X can
be modelled as a straight line and, consequently, whether the bivariate regression
model is appropriate.

Formulate the general model

In the bivariate regression model, the general form of a straight line is

Y = β0 + β1X

where Y = dependent or criterion variable
X = independent or predictor variable
β0 = intercept of the line
β1 = slope of the line.

This model implies a deterministic relationship in that Y is completely determined by
X. The value of Y can be perfectly predicted if β0 and β1 are known. In marketing
research, however, very few relationships are deterministic. Thus, the regression pro-
cedure adds an error term to account for the probabilistic or stochastic nature of the
relationship. The basic regression equation becomes

Yi = β0 + β1Xi + ei

where ei is the error term associated with the ith observation.7 Estimation of the
regression parameters, β0 and β1, is relatively simple.

Estimate the parameters

In most cases, β0 and β1 are unknown and are estimated from the sample observations
using the equation

Y
^

i = a + bxi

where Y
^

i is the estimated or predicted value of Yi, and a and b are estimators of β0

and β1 respectively. The constant b is usually referred to as the non-standardised
regression coefficient. It is the slope of the regression line, and it indicates the
expected change in Y when X is changed by one unit. The formulae for calculating a
and b are simple.8 The slope, b, may be computed in terms of the covariance between
X and Y (COVxy) and the variance of X as

COVxyb = –––––––
S2

x

n

∑ (Xi – X
–

)(Yi –Y
–

)
i=1

= ––––––––––––––––
n

∑ (Xi – X
–

)2

i =1

n

∑ XiYi – nX
–

Y
–

i=1
= –––––––––––

n

∑ X2
i – nX

–2

i=1
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The intercept, a, may then be calculated using

a = Y
–

– bX
–

For the data in Table 20.2, the estimation of parameters may be illustrated as follows:

12

Σ XiYi = (10)(6) + (12)(9) + (12)(8) + (4)(3) + (12)(10) + (6)(4) + (8)(5) + (2)(2)
i=1

+ (18)(11) + (9)(9) + (17)(10) + (2)(2)
= 917

12

Σ Xi
2 = 102 + 122 + 122 + 42 + 122 + 62 + 82 + 22 + 182 + 92 + 172 + 22

i=l
= 1350

It may be recalled from earlier calculations of the simple correlation that

X
–

= 9.333

Y
–

= 6.583

Given n = 12, b can be calculated as

917 – (12)(9.333)(6.583)
b = ––––––––––––––––––––––

1350 – (12)(9.333)2

= 0.5897

a = Y
–

– bX
–

= 6.583 – (0.5897)(9.333)

= 1.0793

Note that these coefficients have been estimated on the raw (untransformed) data.
Should standardisation of the data be considered desirable, the calculation of the
standardised coefficients is also straightforward.

Estimate the standardised regression coefficient

Standardisation is the process by which the raw data are transformed into new vari-
ables that have a mean of 0 and a variance of 1 (Chapter 17). When the data are
standardised, the intercept assumes a value of 0. The term beta coefficient or beta

weight is used to denote the standardised regression coefficient. In this case, the slope
obtained by the regression of Y on X, Byx, is the same as the slope obtained by the
regression of X on Y, Bxy. Moreover, each of these regression coefficients is equal to
the simple correlation between X and Y:

Byx = Bxy = rxy

There is a simple relationship between the standardised and non-standardised regres-
sion coefficients:

SxByx = byx (–––)Sy

For the regression results given in Table 20.3, the value of the beta coefficient is esti-
mated as 0.9361.

Once the parameters have been estimated, they can be tested for significance.
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Test for significance 

The statistical significance of the linear relationship between X and Y may be tested by
examining the hypotheses

H0: β1 = 0

H1: β1 ≠ 0

The null hypothesis implies that there is no linear relationship between X and Y. The
alternative hypothesis is that there is a relationship, positive or negative, between X
and Y. Typically, a two-tailed test is done. A t statistic with n – 2 degrees of freedom
can be used, where

b
t = ––––

SEb

and SEb denotes the standard deviation of b, called the standard error.9 The t distribu-
tion was discussed in Chapter 18.

Using a software package, the regression of attitude on duration of residence, using
the data shown in Table 20.2, yielded the results shown in Table 20.3. The intercept, a,
equals 1.0793, and the slope, b, equals 0.5897. Therefore, the estimated equation is

attitude (Y
^ 

) = 1.0793 + 0.5897 (duration of residence)

The standard error or standard deviation of b is estimated as 0.07008, and the value of
the t statistic, t = 0.5897/0.0701 = 8.414, with n – 2 = 10 degrees of freedom. From
Table 4 in the Statistical Appendix, we see that the critical value of t with 10 degrees of
freedom and α = 0.05 is 2.228 for a two-tailed test. Since the calculated value of t is
larger than the critical value, the null hypothesis is rejected. Hence, there is a signifi-
cant linear relationship between attitude towards the city and duration of residence in
the city. The positive sign of the slope coefficient indicates that this relationship is
positive. In other words, those who have lived in the city for a longer time have more
positive attitudes towards the city.
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Multiple R 0.93608

R2 0.87624

Adjusted R2 0.86387

Standard error 1.22329

Table 20.3 Bivariate regression

Analysis of variance

df Sum of squares Mean square

Regression 1 105.95222 105.95222

Residual 10 14.96444 1.49644

F = 70.80266 Significance of F = 0.0000

Variables in the equation

Variable b SEb β T Sig. of T

Duration 0.58972 0.07008 0.93608 8.414 0.0000

(Constant) 1.07932 0.74335 1.452 0.1772



 

Determine strength and significance of association

A related inference involves determining the strength and significance of the associa-
tion between Y and X. The strength of association is measured by the coefficient of
determination, r 2. In bivariate regression, r 2 is the square of the simple correlation
coefficient obtained by correlating the two variables. The coefficient r2 varies between
0 and 1. It signifies the proportion of the total variation in Y that is accounted for by
the variation in X. The decomposition of the total variation in Y is similar to that for
analysis of variance (Chapter 19). As shown in Figure 20.5, the total variation SSy may
be decomposed into the variation accounted for by the regression line, SSreg, and the
error or residual variation, SSerror or SSres, as follows:

SSy = SSreg + SSres

SSy = Σ
n

i=1
(Yi – Y

–
)2

SSreg = Σ
n

i=1
(Y

^

i – Y
–

)2

SSres = Σ
n

i=1
(Yi – Y

^

i)
2

The strength of the association may then be calculated as follows:

SSreg
r2 = –––––

SSy

SSy – SSres
= –––––––––

SSy

To illustrate the calculations of r 2, let us consider again the effect of attitude
towards the city on the duration of residence. It may be recalled from earlier calcula-
tions of the simple correlation coefficient that

SSy = Σ
n

i=1
(Yi – Y

–
)2

= 120.9168

The predicted values (Ŷ ) can be calculated using the regression equation

attitude (Ŷ ) = 1.0793 + 0.5897 (duration of residence)

For the first observation in Table 20.2, this value is

(Ŷ ) = 1.0793 + (0.5897 × 10) = 6.9763

Conducting bivariate regression analysis

525

X

Y

Explained variation

SSreg

Residual variation

SSres

Y

Total

variation

SSy

Figure 20.5

Decomposition of the

total variation in

bivariate regression



 

For each successive observation, the predicted values are, in order, 8.1557, 8.1557,
3.4381, 8.1557, 4.6175, 5.7969, 2.2587, 11.6939, 6.3866, 11.1042, 2.2587. Therefore,

SSreg = Σ
n

i=1
(Ŷi – Y

–
)2

= (6.9763 – 6.5833)2 + (8.1557 – 6.5833)2 + (8.1557 – 6.5833)2

+ (3.4381 – 6.5833)2 + (8.1557 – 6.5833)2 + (4.6175 – 6.5833)2

+ (5.7969 – 6.5833)2 + (2.2587 – 6.5833)2 + (11.6939 – 6.5833)2

+ (6.3866 – 6.5833)2 + (11.1042 – 6.5833)2 + (2.2587 – 6.5833)2

= 0.1544 + 2.4724 + 2.4724 + 9.8922 + 2.4724 + 3.8643 + 0.6184
+ 18.7021 + 26.1182 + 0.0387 + 20.4385 + 18.7021

= 105.9466

SSres = Σ
n

i=1
(Yi – Ŷi)

2

= (6 – 6.9763)2 + (9 – 8.1557)2 + (8 – 8.1557)2 + (3 – 3.4381)2

+ (10 – 8.1557)2 + (4 – 4.6175)2 + (5 – 5.7969)2 + (2 – 2.2587)2

+ (11 – 11.6939)2 + (9 – 6.3866)2 + (10 – 11.1042)2 + (2 – 2.2587)2

= 14.9644

It can be seen that SSy = SSreg + SSres. Furthermore,

SSreg
r2 = ––––

SSy

105.9466
= –––––––––

120.9168

= 0.8762

Another equivalent test for examining the significance of the linear relationship
between X and Y (significance of b) is the test for the significance of the coefficient of
determination. The hypotheses in this case are

H0: R2
pop = 0

H1: R2
pop > 0

The appropriate test statistic is the F statistic

SSreg
F = –––––––––––

SSres /(n – 2)

which has an F distribution with 1 and n – 2 degrees of freedom. The F test is a gener-
alised form of the t test (see Chapter 18). If a random variable is t distributed with n
degrees of freedom, then t2 is F distributed with 1 and n degrees of freedom. Hence,
the F test for testing the significance of the coefficient of determination is equivalent
to testing the following hypotheses:

H0: β1 = 0

H1: β1 ≠ 0

or

H0: ρ = 0

H1: ρ ≠ 0
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From Table 20.3, it can be seen that

105.9522
r2 = –––––––––––––––––

105.9522 + 14.9644

= 0.8762

which is the same as the value calculated earlier. The value of the F statistic is

105.9522
F = –––––––––––

14.9644/10

= 70.8027

with 1 and 10 degrees of freedom. The calculated F statistic exceeds the critical value
of 4.96 determined from Table 5 in the Statistical Appendix. Therefore, the relation-
ship is significant at α = 0.05, corroborating the results of the t test. If the relationship
between X and Y is significant, it is meaningful to predict the values of Y based on the
values of X and to estimate prediction accuracy.

Check prediction accuracy

To estimate the accuracy of predicted values, Ŷ, it is useful to calculate the standard
error of estimate, SEE. This statistic is the standard deviation of the actual Y values
from the predicted Ŷ values.

or, more generally, if there are k independent variables

SEE may be interpreted as a kind of average residual or average error in predicting Y
from the regression equation.10

Two cases of prediction may arise. The researcher may want to predict the mean
value of Y for all the cases with a given value of X, say X0, or predict the value of Y for a
single case. In both situations, the predicted value is the same and is given by Ŷ, where

Ŷ = a + bX0

But the standard error is different in the two situations, although in both situations it
is a function of SEE. For large samples, the standard error for predicting the mean
value of Y is SEE/ n and for predicting individual Y values it is SEE. Hence, the con-
struction of confidence intervals (see Chapter 15) for the predicted value varies,
depending upon whether the mean value or the value for a single observation is being
predicted. For the data given in Table 20.3, SEE is estimated as follows:

= 1.22329

14.9644
SEE =    ––––––––

12 –2

SSresSEE =    ––––––––
n – k – 1

SSresSEE =    –––––
n – 2

Σ
n

i=1
(Yi – Ŷ)2

SEE =    ––––––––––
n – 2

Conducting bivariate regression analysis

527



 

The final two steps in conducting bivariate regression, namely examination of residu-
als and model cross-validation, are considered later, and we now turn to the
assumptions underlying the regression model.

Assumptions

The regression model makes a number of assumptions in estimating the parameters
and in significance testing, as shown in Figure 20.4:

1 The error term is normally distributed. For each fixed value of X, the distribution
of Y is normal.11

2 The means of all these normal distributions of Y, given X, lie on a straight line with
slope b.

3 The mean of the error term is 0.
4 The variance of the error term is constant. This variance does not depend on the

values assumed by X.
5 The error terms are uncorrelated. In other words, the observations have been

drawn independently.

Insights into the extent to which these assumptions have been met can be gained by an
examination of residuals, which is covered in the next section on multiple regression.12

Multiple regression

Multiple regression involves a single dependent variable and two or more independ-
ent variables. The questions raised in the context of bivariate regression can also be
answered via multiple regression by considering additional independent variables:

■ Can variation in sales be explained in terms of variation in advertising expendi-
tures, prices and level of distribution?

■ Can variation in market shares be accounted for by the size of the sales force,
advertising expenditures and sales promotion budgets?

■ Are consumers’ perceptions of quality determined by their perceptions of prices,
brand image and brand attributes?

Additional questions can also be answered by multiple regression:

■ How much of the variation in sales can be explained by advertising expenditures,
prices and level of distribution?

■ What is the contribution of advertising expenditures in explaining the variation in
sales when the levels of prices and distribution are controlled?

■ What levels of sales may be expected given the levels of advertising expenditures,
prices and level of distribution?

Global brands, local ads13

Europeans welcome brands from other countries, but when it comes to advertising, they

seem to prefer brands from their own country. A survey conducted by Yankelovich and

Partners and its affiliates found that most European consumers’ favourite commercials were

for local brands even though they were more than likely to buy foreign brands. Respondents

in Britain, France and Germany named Coca-Cola as the most often purchased soft drink. The

French, however, selected the famous award-winning spot for France’s Perrier bottled water

as their favourite commercial. Similarly, in Germany, the favourite advertising was for a

German brand of non-alcoholic beer, Clausthaler. In Britain, though, Coca-Cola was the

favourite soft drink and also the favourite advertising. In the light of such findings, the impor-

Chapter 20 • Correlation and regression

528

Multiple regression

A statistical technique that

simultaneously develops a

mathematical relationship

between two or more

independent variables and an

interval-scaled dependent

variable.

e x a m p l e



 

tant question was: does advertising help? Does it help increase the purchase probability of

the brand or does it merely maintain the brand recognition rate high? One way of finding out

was by running a regression where the dependent variable was the likelihood of brand pur-

chase and the independent variables were brand attribute evaluations and advertising

evaluations. Separate models with and without advertising could be run to assess any signifi-

cant difference in the contribution. Individual t tests could also be examined to find out the

significant contribution of both the brand attributes and advertising. The results could indicate

the degree to which advertising plays an important part in brand purchase decisions. ■

The general form of the multiple regression model is as follows:

y = β0 + β1X1 + β2X2 + β3X3 + . . . + βkXk + e

which is estimated by the following equation:

Ŷ = a + b1X1 + b2X2 + b3X3 + . . . +bkXk

As before, the coefficient a represents the intercept, but the bs are now the partial

regression coefficients. The least squares criterion estimates the parameters in such a

way as to minimise the total error, SSres. This process also maximises the correlation

between the actual values of Y and the predicted values of Ŷ. All the assumptions

made in bivariate regression also apply in multiple regression. We define some associ-

ated statistics and then describe the procedure for multiple regression analysis.14

Most of the statistics and statistical terms described under bivariate regression also

apply to multiple regression. In addition, the following statistics are used:

Adjusted R2. R2, the coefficient of multiple determination, is adjusted for the number

of independent variables and the sample size to account for the diminishing

returns. After the first few variables, the additional independent variables do not

make much contribution.

Coefficient of multiple determination. The strength of association in multiple

regression is measured by the square of the multiple correlation coefficient, R2,

which is also called the coefficient of multiple determination.

F test. The F test is used to test the null hypothesis that the coefficient of multiple

determination in the population, R2
pop, is zero. This is equivalent to testing the null

hypothesis H0: β1 = β2 = β3 = . . . = βk = 0. The test statistic has an F distribution

with k and (n – k – 1) degrees of freedom.

Partial F test. The significance of a partial regression coefficient, βi, of Xi may be

tested using an incremental F statistic. The incremental F statistic is based on the

increment in the explained sum of squares resulting from the addition of the inde-

pendent variable Xi to the regression equation after all the other independent

variables have been included.

Partial regression coefficient. The partial regression coefficient, b1, denotes the

change in the predicted value, Ŷ, per unit change in X1 when the other independent

variables, X2 to Xk, are held constant.

Conducting multiple regression analysis

The steps involved in conducting multiple regression analysis are similar to those for
bivariate regression analysis. The discussion focuses on partial regression coefficients,
strength of association, significance testing and examination of residuals.
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Estimating the partial regression coefficients

To understand the meaning of a partial regression coefficient, let us consider a case in
which there are two independent variables, so that

Ŷ = a + b1X1 + b2X2

First, note that the relative magnitude of the partial regression coefficient of an inde-
pendent variable is, in general, different from that of its bivariate regression
coefficient. In other words, the partial regression coefficient, b1, will be different from
the regression coefficient, b, obtained by regressing Y on only X1. This happens
because X1 and X2 are usually correlated. In bivariate regression, X2 was not consid-
ered, and any variation in Y that was shared by X1 and X2 was attributed to X1. In the
case of multiple independent variables, however, this is no longer true.

The interpretation of the partial regression coefficient, b1, is that it represents the
expected change in Y when X1 is changed by one unit but X2 is held constant or other-
wise controlled. Likewise, b2 represents the expected change in Y for a unit change in
X2 when X1 is held constant. Thus, calling b1 and b2 partial regression coefficients is
appropriate. It can also be seen that the combined effects of X1 and X2 on Y are addi-
tive. In other words, if X1 and X2 are each changed by one unit, the expected change in
Y would be (b1 + b2) .

Conceptually, the relationship between the bivariate regression coefficient and the

partial regression coefficient can be illustrated as follows. Suppose that one were to

remove the effect of X2 from X1. This could be done by running a regression of X1 on

X2. In other words, one would estimate the equation Ŷ1 = a + bX2 and calculate the

residual Xr = (X1 – Ŷ1). The partial regression coefficient, b1, is then equal to the

bivariate regression coefficient, b, obtained from the equation Ŷ = a + bXr. In other

words, the partial regression coefficient, b1, is equal to the regression coefficient, b,

between Y and the residuals of X1 from which the effect of X2 has been removed. The

partial coefficient, b, can also be interpreted along similar lines.

Extension to the case of k variables is straightforward. The partial regression coeffi-

cient, b1, represents the expected change in Y when X1 is changed by one unit and X2

to Xk are held constant. It can also be interpreted as the bivariate regression coeffi-

cient, b, for the regression of Y on the residuals of X1, when the effect of X2 to Xk has

been removed from X1.
The beta coefficients are the partial regression coefficients obtained when all the

variables (Y, X1, X2, . . . Xk) have been standardised to a mean of 0 and a variance of 1
before estimating the regression equation. The relationship of the standardised to the
non-standardised coefficients remains the same as before:

Sx1B1 = b1(–––)Sy

�

SxkBk = bk(–––)Sy

The intercept and the partial regression coefficients are estimated by solving a

system of simultaneous equations derived by differentiating and equating the partial

derivatives to 0. Since these coefficients are automatically estimated by the various

computer programs, we will not present the details. Yet it is worth noting that the

equations cannot be solved if (1) the sample size, n, is smaller than or equal to the

number of independent variables, k, or (2) one independent variable is perfectly cor-

related with another.
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Suppose that in explaining the attitude towards the city we now introduce a second
variable, importance attached to the weather. The data for the 12 pre-test respondents
on attitude towards the city, duration of residence and importance attached to the
weather are given in Table 20.2. The results of multiple regression analysis are
depicted in Table 20.4. The partial regression coefficient for duration (X1) is now
0.4811, different from what it was in the bivariate case. The corresponding beta coeffi-
cient is 0.7636.

The partial regression coefficient for importance attached to weather (X2) is
0.2887, with a beta coefficient of 0.3138. The estimated regression equation is

(Ŷ )= 0.33732 + 0.48108X1 + 0.28865X2

or

attitude = 0.33732 + 0.48108 (duration) + 0.28865 (importance)

This equation can be used for a variety of purposes, including predicting attitudes
towards the city, given a knowledge of the respondents’ duration of residence in the
city and the importance they attach to weather.

Strength of association

The strength of the relationship stipulated by the regression equation can be deter-
mined by using appropriate measures of association. The total variation is
decomposed as in the bivariate case:

SSy = SSreg + SSres

where  SSy = Σ
n

i=1
(Yi – Y

–
)2

SSreg = Σ
n

i=1
(Ŷi – Y

–
)2

SSres = Σ
n

i=1
(Yi – Ŷ )2
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Multiple R 0.97210

R2 0.94498

Adjusted R2 0.93276

Standard error 0.85974

Table 20.4 Multiple regression

Analysis of variance

df Sum of squares Mean square

Regression 2 114.26425 57.13213

Residual 9 6.65241 0.73916

F = 77.29364 Significance of F = 0.0000

Variables in the equation

Variable b SEb β T Sig. of T

Importance 0.28865 0.08608 0.31382 3.353 0.0085

Duration 0.48108 0.05895 0.76363 8.160 0.0000

(Constant) 0.33732 0.56736 0.595 0.5668



 

The strength of association is measured by the square of the multiple correlation
coefficient, R2, which is also called the coefficient of multiple determination:

SSreg
R2 = –––––

SSy

The multiple correlation coefficient, R, can also be viewed as the simple correlation

coefficient, r, between Y and Ŷ. Several points about the characteristics of R2 are worth

noting. The coefficient of multiple determination, R2, cannot be less than the highest

bivariate, r 2, of any individual independent variable with the dependent variable. R2

will be larger when the correlations between the independent variables are low. If the

independent variables are statistically independent (uncorrelated), then R2 will be the

sum of bivariate r 2 of each independent variable with the dependent variable. R 2

cannot decrease as more independent variables are added to the regression equation.

Yet diminishing returns set in, so that after the first few variables, the additional inde-

pendent variables do not make much of a contribution.15 For this reason, R 2 is

adjusted for the number of independent variables and the sample size by using the

following formula:

k(1 – R2)
adjusted R2 = R2 – –––––––––

n – k – 1

For the regression results given in Table 20.4, the value of R2 is

114.2643
R2 = ––––––––––––––––

114.2643 + 6.6524

= 0.9450

This is higher than the r2 value of 0.8762 obtained in the bivariate case. The r2 in the

bivariate case is the square of the simple (product moment) correlation between atti-

tude toward the city and duration of residence. The R 2 obtained in multiple

regression is also higher than the square of the simple correlation between attitude

and importance attached to weather (which can be estimated as 0.5379). The adjusted

R2 is estimated as
2(1.0 – 0.9450)

adjusted R2 = 0.9450 – ––––––––––––––
12 – 2 – 1

= 0.9328

Note that the value of adjusted R 2 is close to R 2 and both are higher than r 2 for the

bivariate case. This suggests that the addition of the second independent variable,

importance attached to weather, makes a contribution in explaining the variation in

attitude towards the city.

Test for significance 

Significance testing involves testing the significance of the overall regression equation

as well as specific partial regression coefficients. The null hypothesis for the overall

test is that the coefficient of multiple determination in the population, R2
pop, is zero:

H0: R2
pop = 0

This is equivalent to the following null hypothesis:

H0: β1 = β2 = β3 = . . . = βk = 0
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The overall test can be conducted by using an F statistic

SSreg/k
F = –––––––––––––

SSreg/(n – k –1)

R2/k
= ––––––––––––––––

(1 – R2)/(n – k –1)

which has an F distribution with k and n – k – 1 degrees of freedom.16 For the multi-
ple regression results given in Table 20.4,

114.2642 / 2
F = ––––––––––– = 77.2938

6.6524 / 9

which is significant at α = 0.05.
If the overall null hypothesis is rejected, one or more population partial regression

coefficients have a value different from 0. To determine which specific coefficients
(βis) are non-zero, additional tests are necessary. Testing for the significance of the βis
can be done in a manner similar to that in the bivariate case by using t tests. The sig-
nificance of the partial coefficient for importance attached to weather may be tested
by the following equation:

b
t = ––––

SEb

0.2887
= –––––––– = 3.353

0.08608

which has a t distribution with n – k – 1 degrees of freedom. This coefficient is signifi-
cant at α = 0.05. The significance of the coefficient for duration of residence is tested in
a similar way and found to be significant. Therefore, both the duration of residence and
importance attached to weather are important in explaining attitude towards the city.

Some computer programs provide an equivalent F test, often called the partial F
test, which involves a decomposition of the total regression sum of squares, SSreg, into
components related to each independent variable. In the standard approach, this is
done by assuming that each independent variable has been added to the regression
equation after all the other independent variables have been included. The increment
in the explained sum of squares, resulting from the addition of an independent vari-
able, Xi, is the component of the variation attributed to that variable and is denoted
SSxi.

17 The significance of the partial regression coefficient for this variable, βi, is
tested using an incremental F statistic

SSxi / 1
F = –––––––––––––––

SSres / (n – k – 1)

which has an F distribution with 1 and (n – k – 1) degrees of freedom.
While high R2 and significant partial regression coefficients are comforting,

the efficacy of the regression model should be evaluated further by an examination
of the residuals.

Examine the residuals

A residual is the difference between the observed value of Yi and the value predicted
by the regression equation Ŷi Residuals are used in the calculation of several statistics
associated with regression. In addition, scattergrams of the residuals – in which
the residuals are plotted against the predicted values, Ŷi, time, or predictor variables –
provide useful insights in examining the appropriateness of the underlying assump-
tions and regression model fitted.18
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The assumption of a normally distributed error term can be examined by con-
structing a histogram of the residuals. A visual check reveals whether the distribution
is normal. Additional evidence can be obtained by determining the percentages of
residuals falling within ±1 SE or ±2 SE. These percentages can be compared with
what would be expected under the normal distribution (68% and 95%, respectively).
More formal assessment can be made by running the K-S one-sample test.

The assumption of constant variance of the error term can be examined by plot-
ting the residuals against the predicted values of the dependent variable, Ŷi . If the
pattern is not random, the variance of the error term is not constant. Figure 20.6
shows a pattern whose variance is dependent on the Ŷi values.

A plot of residuals against time, or the sequence of observations, will throw some
light on the assumption that the error terms are uncorrelated. A random pattern
should be seen if this assumption is true. A plot like the one in Figure 20.7 indicates a
linear relationship between residuals and time. A more formal procedure for examin-
ing the correlations between the error terms is the Durbin-Watson test.19

Plotting the residuals against the independent variables provides evidence of the
appropriateness or inappropriateness of using a linear model. Again, the plot should
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result in a random pattern. The residuals should fall randomly, with relatively equal
distribution dispersion about 0. They should not display any tendency to be either
positive or negative.

To examine whether any additional variables should be included in the regression
equation, one could run a regression of the residuals on the proposed variables. If any
variable explains a significant proportion of the residual variation, it should be con-
sidered for inclusion. Inclusion of variables in the regression equation should be
strongly guided by the researcher’s theory. Thus, an examination of the residuals pro-
vides valuable insights into the appropriateness of the underlying assumptions and
the model that is fitted. Figure 20.8 shows a plot that indicates that the underlying
assumptions are met and that the linear model is appropriate.

If an examination of the residuals indicates that the assumptions underlying linear
regression are not met, the researcher can transform the variables in an attempt to
satisfy the assumptions. Transformations, such as taking logs, square roots or recipro-
cals, can stabilise the variance, make the distribution normal or make the relationship
linear. We further illustrate the application of multiple regression with an example.

At no ‘Ad’ ditional cost20

It is widely believed that consumer magazines’ prices are subsidised by the advertising carried

within the magazines. A study examined the contribution of advertising to the price per copy

of magazines.

Multiple regression analysis was used to examine the relationships among price per copy

and editorial pages, circulation, percentage of news-stand circulation, promotional expendi-

tures, percentage of colour pages, and per copy advertising revenues. The form of the

analysis was

PPC = b
0

+ b
1
(ed. pages) + b

2
(circ.) + b

3
(% news circ.) + b

4
(PE) + b

5
(% colour)

+ b
6
(ad revs.)
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where

PPC =price per copy (in €)

ed. pages =editorial pages per average issue

circ.=the log of average paid circulation (in thousands)

% news circ.=percentage news-stand circulation

PE=promotional expenditures (in €)

% colour =percentage of pages printed in colour

ad revs.=per copy advertising revenues (in €)

Table 1 shows the zero-order Pearson product moment correlations among the variables.

The correlations provide directional support for the predicted relationships and show that

collinearity among the independent variables is sufficiently low so as not to affect the stability

of the regression analysis. The highest correlation among the independent variables was

between promotional expenditures and circulation (r = 0.42).

The results of the regression analysis using price per copy as the dependent variable are

given in Table 2. Of the six independent variables, three were significant (p < 0.05): the

number of editorial pages, average circulation, and percentage news-stand circulation. The

three variables accounted for virtually all of the explained variance (R2 = 0.51; adjusted R2 =

0.48). The direction of the coefficients was consistent with prior expectations: the number of

editorial pages was positive, circulation was negative, and percentage news-stand circulation

was positive. This was expected, given the structure of the magazine publishing industry, and

it confirmed the hypothesised relationship.
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Price per Price per Circulation Editorial Promotional % colour % news-

copy editorial page pages expenditures pages stand circ.

Price per editorial page 0.60a

Circulation –0.21a –0.42a

Editorial pages 0.52a –0.30a 0.29a

Promotional expenditures –0.22a –0.06 0.42a –0.19

% colour pages 0.01 –0.15 0.33a 0.19 –0.15

% news-stand circ. 0.46a 0.17 0.09 0.31a 0.26a 0.02

Ad. revenues per copy 0.29a –0.04 –0.25a 0.30a –0.14 0.15 0.08

Table 1  Zero-order correlation matrix of variables in analyses

a p < 0.05.

b SE F

Dependent variable: price per copy

Independent variables:

Editorial pages 0.0084 0.0017 23.04a

Circulation –0.4180 0.1372 9.29a

Percentage news-stand circulation 0.0067 0.0016 18.46 a

Promotional expenditures 0.13–0.04b 0.0000 0.59

Percentage colour pages 0.0227 0.0092 0.01

Per copy ad. revenues 0.1070 0.0412 0.07

Overall R2 = 0.51 df = 6, 93 Overall F = 16.19a

Table 2 Regression analysis using price per copy as dependent variable

a p < 0.05.
b Decimal moved in by four zeros.



 

Promotional expenditures, use of colour and per copy advertising revenues were found to

have no relationship with price per copy, after the effects of circulation, percentage news-

stand circulation and editorial pages were controlled in the regression analysis.

Because the effect of per copy advertising revenue was not significant, no support was

found for the contention that advertising decreases the price per copy of consumer maga-

zines. It was concluded that advertising in magazines is provided free to consumers, but does

not subsidise prices. ■

In the preceding example, promotional expenditures, percentage of colour pages
and per copy advertising revenues were not found to be significantly related to the
price per copy of magazines. Some of the independent variables considered in a study
often turn out to be non-significant. When there are a large number of independent
variables and the researcher suspects that not all of them are significant, stepwise
regression should be used.

Stepwise regression

The purpose of stepwise regression is to select, from a large number of predictor
variables, a small subset of variables that account for most of the variation in the
dependent or criterion variable. In this procedure, the predictor variables enter or are
removed from the regression equation one at a time.21 There are several approaches
to stepwise regression.

1 Forward inclusion. Initially, there are no predictor variables in the regression
equation. Predictor variables are entered one at a time, only if they meet certain
criteria specified in terms of F ratio. The order in which the variables are
included is based on the contribution to the explained variance.

2 Backward elimination. Initially, all the predictor variables are included in the
regression equation. Predictors are then removed one at a time based on the F ratio
for removal.

3 Stepwise solution. Forward inclusion is combined with the removal of predictors
that no longer meet the specified criterion at each step.

Stepwise procedures do not result in regression equations which are optimal, in the
sense of producing the largest R2, for a given number of predictors.22 Because of the
correlations between predictors, an important variable may never be included or less
important variables may enter the equation. To identify an optimal regression equation,
one would have to compute combinatorial solutions in which all possible combinations
are examined. Nevertheless, stepwise regression can be useful when the sample size is
large in relation to the number of predictors, as shown in the following example.

Browsers step out23

A profile of browsers in regional shopping centres was constructed using three sets of inde-

pendent variables: demographics, shopping behaviour, and psychological and attitudinal

variables. The dependent variable consisted of a browsing index. In a stepwise regression

including all three sets of variables, demographics were found to be the most powerful predic-

tors of browsing behaviour. The final regression equation, which contained 20 of the possible

36 variables, included all the demographics. The table presents the regression coefficients,

standard errors of the coefficients, and their significance levels.

In interpreting the coefficients, it should be recalled that the smaller the browsing index

(the dependent variable), the greater the tendency to exhibit behaviours associated with

browsing. The two predictors with the largest coefficients were gender and employment

status. Browsers were more likely to be employed females. They also tend to be somewhat
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‘downscale’, compared with other shopping centre patrons, exhibiting lower levels of education

and income, after accounting for the effects of gender and employment status. Although browsers

tend to be somewhat younger than non-browsers, they are not necessarily single; those who

reported larger family sizes tended to be associated with smaller values of the browsing index.

The ‘downscale’ profile of browsers relative to other patrons indicates that speciality stores

in shopping centres should emphasise moderately priced products. This may explain the his-

torically low rate of failure in shopping centres among such stores and the tendency of

high-priced speciality shops to be located in only the prestigious shopping centres or ‘upscale’

non-enclosed shopping centres. ■

Multicollinearity

Stepwise regression and multiple regression are complicated by the presence of multi-

collinearity. Virtually all multiple regression analyses done in marketing research
involve predictors or independent variables that are related. Multicollinearity, how-
ever, arises when intercorrelations amongst the predictors are very high.24

Multicollinearity can result in several problems, including the following:

1 The partial regression coefficients may not be estimated precisely. The standard
errors are likely to be high.
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Multicollinearity

A state of high

intercorrelations among

independent variables.

Variable description Coefficient SE Significance

Gender (0 = male, 1 = female) –0.485 0.164 0.001

Employment status (0 = employed) 0.391 0.182 0.003

Self-confidence –0.152 0.128 0.234

Education 0.079 0.072 0.271

Brand intention –0.063 0.028 0.024

Watch daytime TV? (0 = yes) 0.232 0.144 0.107

Tension –0.182 0.069 0.008

Income 0.089 0.061 0.144

Frequency of shopping centre visits –0.130 0.059 0.028

Fewer friends than most 0.162 0.084 0.054

Good shopper –0.122 0.090 0.174

Others’ opinions important –0.147 0.065 0.024

Control over life –0.069 0.069 0.317

Family size –0.086 0.062 0.165

Enthusiastic person –0.143 0.099 0.150

Age 0.036 0.069 0.603

Number of purchases made –0.068 0.043 0.150

Purchases per store 0.209 0.152 0.167

Shop on tight budget –0.055 0.067 0.412

Excellent judge of quality –0.070 0.089 0.435

Constant 3.250

Overall R2 = 0.477

Regression of browsing index on descriptive and attitudinal variables by order of entry into

stepwise regression



 

2 The magnitudes as well as the signs of the partial regression coefficients may
change from sample to sample.

3 It becomes difficult to assess the relative importance of the independent variables
in explaining the variation in the dependent variable.

4 Predictor variables may be incorrectly included or removed in stepwise regression.

What constitutes serious multicollinearity is not always clear, although several rules of
thumb and procedures have been suggested in the literature. Procedures of varying
complexity have also been suggested to cope with multicollinearity.25 A simple proce-
dure consists of using only one of the variables in a highly correlated set of variables.

Alternatively, the set of independent variables can be transformed into a new set of
predictors that are mutually independent by using techniques such as principal com-
ponents analysis (see Chapter 22). More specialised techniques, such as ridge
regression and latent root regression, can also be used.26

Relative importance of predictors

When multicollinearity is present, special care is required in assessing the relative
importance of independent variables. In marketing research, it is valuable to deter-
mine the relative importance of the predictors. In other words, how important are the
independent variables in accounting for the variation in the criterion or dependent
variable?27 Unfortunately, because the predictors are correlated, there is no unam-
biguous measure of relative importance of the predictors in regression analysis.28

Several approaches, however, are commonly used to assess the relative importance of
predictor variables.

1 Statistical significance. If the partial regression coefficient of a variable is not signifi-
cant, as determined by an incremental F test, that variable is judged to be
unimportant. An exception to this rule is made if there are strong theoretical rea-
sons for believing that the variable is important.

2 Square of the simple correlation coefficient. This measure, r2, represents the propor-
tion of the variation in the dependent variable explained by the independent
variable in a bivariate relationship.

3 Square of the partial correlation coefficient. This measure, R 2yxi·xj·xk, is the coeffi-
cient of determination between the dependent variable and the independent
variable, controlling for the effects of the other independent variables.

4 Square of the part correlation coefficient. This coefficient represents an increase in R2

when a variable is entered into a regression equation that already contains the
other independent variables.

5 Measures based on standardised coefficients or beta weights. The most commonly
used measures are the absolute values of the beta weights, |βi|, or the squared
values, βi

2. Because they are partial coefficients, beta weights take into account the
effect of the other independent variables. These measures become increasingly
unreliable as the correlations among the predictor variables increase (multi-
collinearity increases).

6 Stepwise regression. The order in which the predictors enter or are removed from
the regression equation is used to infer their relative importance.

Given that the predictors are correlated, at least to some extent, in virtually all regres-
sion situations, none of these measures is satisfactory. It is also possible that the
different measures may indicate a different order of importance of the predictors.29

Yet if all the measures are examined collectively, useful insights may be obtained into
the relative importance of the predictors.
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Cross-validation

Before assessing the relative importance of the predictors or drawing any other infer-
ences, it is necessary to cross-validate the regression model. Regression and other
multivariate procedures tend to capitalise on chance variations in the data. This could
result in a regression model or equation that is unduly sensitive to the specific data used
to estimate the model. One approach for evaluating the model for this and other prob-
lems associated with regression is cross-validation. Cross-validation examines whether
the regression model continues to hold on comparable data not used in the estimation.
The typical cross-validation procedure used in marketing research is as follows.

1 The regression model is estimated using the entire data set.
2 The available data are split into two parts, the estimation sample and the validation

sample. The estimation sample generally contains 50 – 90% of the total sample.
3 The regression model is estimated using the data from the estimation sample only.

This model is compared with the model estimated on the entire sample to deter-
mine the agreement in terms of the signs and magnitudes of the partial regression
coefficients.

4 The estimated model is applied to the data in the validation sample to predict the
values of the dependent variable, Y

^

i, for the observations in the validation sample.
5 The observed values, Yi, and the predicted values, Y

^

i, in the validation sample
are correlated to determine the simple r 2. This measure, r 2, is compared with R2

for the total sample and with R2 for the estimation sample to assess the degree
of shrinkage.

A special form of validation is called double cross-validation. In double cross-valida-
tion the sample is split into halves. One half serves as the estimation sample, and the
other is used as a validation sample in conducting cross-validation. The roles of the esti-
mation and validation halves are then reversed, and the cross-validation is repeated.30

Regression with dummy variables

Cross-validation is a general procedure that can be applied even in some special appli-
cations of regression, such as regression with dummy variables. Nominal or categorical
variables may be used as predictors or independent variables by coding them as dummy
variables. The concept of dummy variables was introduced in Chapter 17. In that chap-
ter, we explained how a categorical variable with four categories (heavy users, medium
users, light users and non-users) can be coded in terms of three dummy variables, D1,
D2 and D3, as shown.

Suppose that the researcher was interested in running a regression analysis of the
effect of attitude towards the brand on product use. The dummy variables D1, D2 and D3
would be used as predictors. Regression with dummy variables would be modelled as

Ŷi = a + b1D1 + b2D2 + b3D3
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Product usage Original Dummy variable code

category variable code
D1 D2 D3

Non-users 1 1 0 0

Light users 2 0 1 0

Medium users 3 0 0 1

Heavy users 4 0 0 0



 

In this case, ‘heavy users’ have been selected as a reference category and have not been
directly included in the regression equation. Note that for heavy users, D1, D2 and D3

assume a value of 0, and the regression equation becomes

Y
^

i = a

For non-users, D1 = 1, and D2 = D3 = 0, and the regression equation becomes

Y
^

i = a + b1

Thus, the coefficient b1 is the difference in predicted Yi for non-users, as compared
with heavy users. The coefficients b2 and b3 have similar interpretations. Although
heavy users was selected as a reference category, any of the other three categories
could have been selected for this purpose.31

Analysis of variance and covariance with regression

Regression with dummy variables provides a framework for understanding the analysis
of variance and covariance. Although multiple regression with dummy variables pro-
vides a general procedure for the analysis of variance and covariance, we show only the
equivalence of regression with dummy variables to one-way analysis of variance. In
regression with dummy variables, the predicted Y

^ 
for each category is the mean of Y

for each category. To illustrate using the dummy variable coding of product use we just
considered, the predicted Y

^ 
and mean values for each category are as follows:

Given this equivalence, it is easy to see further relationships between dummy variable
regression and one-way ANOVA.32

Thus, we see that regression in which the single independent variable with c cate-
gories has been recoded into c – 1 dummy variables is equivalent to one-way analysis
of variance. Using similar correspondences, one can also illustrate how n-way analysis
of variance and analysis of covariance can be performed using regression with
dummy variables.

Analysis of variance and covariance with regression
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Product usage category Predicted value Mean value

Ŷ Y
–

Non-users a + b
1

a + b
1

Light users a + b
2

a + b
2

Medium users a + b
3

a + b
3

Heavy users a a

Dummy variable regression One-way ANOVA

SSres = Σ
n

i=1
(Yi – Ŷi)

2 = SSwithin

SSreg = Σ
n

i=1
(Ŷi – Y

–
)2 = SSbetween

R2 = η2

Overall F test = F test
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In ternet  and computer  app l icat ions

The computer packages contain several programs to perform correlation analysis
and regression analysis, calculating the associated statistics, performing tests for sig-
nificance and plotting the residuals.

SPSS

CORRELATIONS can be used for computing Pearson product moment correla-
tions, PARTIAL CORR for partial correlations, and NONPAR CORR for
Spearman’s ρs and Kendall’s τ. The main program is REGRESSION which calculates
bivariate and multiple regression equations, associated statistics and plots. It allows
for easy examination of residuals. Stepwise regression can also be conducted.
Regression statistics can be requested with PLOT, which produces simple scatter-
grams and some other types of plots.

SAS

The program CORR can be used for calculating Pearson, Spearman’s, Kendall’s and
partial correlations. REG is a general-purpose regression procedure that fits bivari-
ate and multiple regression models using the least-squares procedure. All the
associated statistics are computed, and residuals can be plotted. Stepwise methods
can be implemented. RSREG is a more specialised procedure that fits a quadratic
response surface model using least squares regression. It is useful for determining
factor levels that optimise a response. The ORTHOREG procedure is recommended
for regression when the data are ill-conditioned. GLM uses the method of least
squares to fit general linear models and can also be used for regression analysis.
NLIN computes the parameters of a non-linear model using least squares or
weighted least squares procedures.

Minitab

Correlation can be computed using the Stat>Basic statistics>Correlation function. It
calculates Pearson’s product moment. The Spearman’s procedure ranks the columns
first and then performs the correlation, on the ranked columns. To compute partial
correlation, use the menu commands Stat>Basic Statistics>Correlation and
Stat>Regression>Regression. Regression analysis, under the Stats>Regression func-
tion, can perform simple, polynomial and multiple analysis. The output includes a
linear regression equation, table of coefficients, R2, adjusted R2, analysis of variance
table, a table of fits and residuals that provide unusual observations. Other available
features include stepwise, best subsets, fitted line plot and residual plots.

Excel

Correlations can be determined in Excel by using the Tools>Data
analysis>Correlation function. Utilise the Correlation Worksheet function when a
correlation coefficient for two cell ranges is needed. There is no separate function
for partial correlations. Regression can be accessed from the Tools>Data analysis
menu. Depending on the features selected, the output can consist of a summary
output table, including an ANOVA table, a standard error of Y estimate, coeffi-
cients, standard error of coefficients, R2 values and the number of observations. In
addition, the function computes a residual output table, a residual plot, a line fit
plot, a normal probability plot and a two-column probability data output table.



 

Summary

The product moment correlation coefficient, r, measures the linear association
between two metric (interval or ratio scaled) variables. Its square, r 2, measures the
proportion of variation in one variable explained by the other. The partial correlation
coefficient measures the association between two variables after controlling, or adjust-
ing for, the effects of one or more additional variables. The order of a partial
correlation indicates how many variables are being adjusted or controlled. Partial cor-
relations can be very helpful for detecting spurious relationships.

Bivariate regression derives a mathematical equation between a single metric crite-
rion variable and a single metric predictor variable. The equation is derived in the
form of a straight line by using the least squares procedure. When the regression is run
on standardised data, the intercept assumes a value of 0, and the regression coefficients
are called beta weights. The strength of association is measured by the coefficient of
determination, r2, which is obtained by computing a ratio of SSreg to SSy. The standard
error of estimate is used to assess the accuracy of prediction and may be interpreted as
a kind of average error made in predicting Y from the regression equation.

Multiple regression involves a single dependent variable and two or more inde-
pendent variables. The partial regression coefficient, b1, represents the expected
change in Y when X1 is changed by one unit and X2 to Xk are held constant. The
strength of association is measured by the coefficient of multiple determination, R2.
The significance of the overall regression equation may be tested by the overall F test.
Individual partial regression coefficients may be tested for significance using the
incremental F test. Scattergrams of the residuals, in which the residuals are plotted
against the predicted values, Y

^

i , time, or predictor variables, are useful for examining
the appropriateness of the underlying assumptions and the regression model fitted.

In stepwise regression, the predictor variables are entered or removed from the
regression equation one at a time for the purpose of selecting a smaller subset of pre-
dictors that account for most of the variation in the criterion variable. Multicollinearity,
or very high intercorrelations among the predictor variables, can result in several prob-
lems. Because the predictors are correlated, regression analysis provides no
unambiguous measure of relative importance of the predictors. Cross-validation exam-
ines whether the regression model continues to hold true for comparable data not used
in estimation. It is a useful procedure for evaluating the regression model.

Nominal or categorical variables may be used as predictors by coding them as
dummy variables. Multiple regression with dummy variables provides a general pro-
cedure for the analysis of variance and covariance.

Questions
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1 What is the product moment correlation coefficient? Does a product moment

correlation of 0 between two variables imply that the variables are not related to

each other?

2 What are the main uses of regression analysis? 

3 What is the least squares procedure?

4 Explain the meaning of standardised regression coefficients.

5 How is the strength of association measured in bivariate regression? In multiple

regression?

6 What is meant by prediction accuracy?

Questions ?????

▲
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7 What is the standard error of the estimate?

8 What is multiple regression? How is it different from bivariate regression?

9 Explain the meaning of a partial regression coefficient. Why is it called that?

10 State the null hypothesis in testing the significance of the overall multiple regression

equation. How is this null hypothesis tested?

11 What is gained by an examination of residuals?

12 Explain the stepwise regression approach. What is its purpose?

13 What is multicollinearity? What problems can arise because of multicollinearity?

14 Describe the cross-validation procedure. Describe double cross-validation.

15 Demonstrate the equivalence of regression with dummy variables to one-way

ANOVA.
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